
Prediction of the Intrinsic Hydrogen Bond Acceptor Strength of Chemical Substances from
Molecular Structure
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Hydrogen bonding affects the partitioning of organic compounds between environmental and biological
compartments as well as the three-dimensional shape of macromolecules. Using the semiempirical quantum
chemical AM1 level of calculation, we have developed a model to predict the site-specific hydrogen bond
(HB) acceptor strength from ground-state properties of the individual compounds. At present, the model
parametrization is confined to compounds with one HB acceptor site of the following atom types: N, O, S,
F, Cl, and Br that act as lone-pair HB acceptors, and π-electron (aromatic or conjugated) systems with the
associated C atoms as particularly weak HB acceptors. The HB acceptor strength is expressed in terms of the
Abraham parameter B and calculated from local molecular parameters, taking into account electrostatic,
polarizability, and charge transfer contributions according to the Morokuma concept. For a data set of 383
compounds, the squared correlation coefficient r2 is 0.97 when electrostatic potential (ESP) derived net atomic
charges are employed, and the root-mean-square (rms) error is 0.04 that is in the range of experimental
uncertainty. The model is validated using an extended leave-50%-out approach, and its performance is
comparatively analyzed with the ones of earlier introduced ab initio (HF/6-31G**) and density functional
theory (B3LYP/6-31G**) models as well as of two increment methods with respect to the total compound
set as well as HB acceptor type subsets. The discussion includes an explorative model application to amides
and organophosphates that demonstrates the robustness of the approach, and further opportunities for model
extensions.

Introduction

Hydrogen bonding has substantial impact on the molecular
structure, chemistry, and biochemistry of chemical compounds.1-3

Predictive quantification of the hydrogen bond (HB) strength
allows one to modify and optimize drug-related properties of
chemicals and to assess their partition profile with respect to
abiotic and biotic compartments. In this context, the well-
established LFER (linear free energy relationship) approach
employing Abraham parameters provides a sound opportunity
to predict respective liquid-liquid partitioning properties P (such
as Kow) of organic compounds.4,5 Recent publications show the
broad application spectrum of the Abraham model, for example,
to predict blood-brain barriers or the distribution of solutes
between water and micelles.6,7 The Abraham-type LFER is often
written in the following form:

In eq 1, P is the partition property of interest, the compound
descriptors V, E, S, A, and B characterize various types of
intermolecular interaction, and the coefficients V, e, s, a, b, and
c encode partition-relevant properties of the specific solvent
system. V is the McGowan characteristic volume, E quantifies
the excess molar refraction of the compound as compared to

an alkane of the same volume, and S is a descriptor supposed
to cover polarity and polarizability. Parameter A characterizes
the HB donor strength (HB acidity), while B quantifies the HB
acceptor strength (HB basicity). This communication deals with
the Abraham descriptor B. Further details of the other parameters
of eq 1 are described elsewhere.8,9

Hydrogen bonding is a directional interaction between an HB
donor and acceptor site. Its strength is usually between van der
Waals and covalent interactions. Recently, Gilli and co-workers
reported a new method to HB strengths by a pKa slide rule with
separate scales for HB donors and HB acceptors.10 It demon-
strates the general interest in methods to predict the HB donor
and acceptor strengths of chemical compounds from molecular
structure. Existing approaches from 3D structure follow the
supermolecular approach, evaluating the formation energies of
H-bond donor-acceptor complexes,11 and there have been also
reported applications of conceptual density functional theory.12

For the HB acceptor strength in the Abraham scale, B, a
general fragment model has been developed that provides fast
predictions based on 2D topological information.8 An updated
version of this method is available through the ADME boxes
software, but the implemented Absolv module including the
actual method details is proprietary and not published.13 An
independent implementation of the fragment method in its
original form has been developed and analyzed with respect to
its prediction performance.14

Recently, we have introduced a quantum chemical approach
to predict the HB donor and acceptor strengths of organic
compounds in terms of their Abraham parameters A and B,
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employing an ab initio level of computational chemistry for the
compounds as single molecules.15,16 For both A and B, r2 values
larger than 0.90 were achieved, and almost identical statistics
for separate test sets demonstrated their prediction capability.
The goal of the present study is to adapt the approach to the
semiempirical AM1 method. The latter reduces vastly the
computation time and enables one to screen even large-scale
inventories of chemical compounds with respect to B and
properties based on predicted B. This combines physical
reliability of quantum chemical methods with computational
rapidness, the latter of which is usually the advantage of
fragment models.

Following the Morokuma analysis, electrostatic effects,
polarization, and charge transfer form major components of
hydrogen bonding.17 Quantification of the Coulomb interaction
potential of HB acceptor sites can be based on net atomic
charges, keeping in mind that the latter are not physically
observable and depend on the method used for their calculation.
With regard to polarization and charge transfer contributions
to the HB acceptor strength, local molecular parameters encod-
ing the site-specific electron donor and acceptor capability were
used. These latter parameters were originally developed to
calculate gas phase hydroxyl radical rate constants.18-20

In the following, we introduce a new prediction model for
the HB acceptor strength B that was calibrated for the semiem-
pirical AM1 level of quantum chemistry. Its performance,
application domain and limitations are compared with existing
models covering both fragment schemes and more sophisticated
ab initio calculations. Moreover, opportunities for possible
model extensions are discussed. Finally, explorative applications
of the new model to amides and organophosphates as com-
pounds outside its original structural domain demonstrate its
robustness.

Material and Methods

Data Set. From literature sources (see Supporting Informa-
tion), 383 aliphatic and aromatic molecules with experimental
values for the Abraham acceptor strength parameter B have been
collected that all contain only one HB acceptor site. The
compound set covers various compound classes, and contains
oxygen, nitrogen, sulfur, and halogen (F, Cl, Br) atoms with
appropriate lone pairs, and weak carbon π bonds as HB acceptor
sites. For exploratory purposes, model statistics have been
checked when including an additional set of 20 monofunctional
compounds with B approximated through experimental �2

H and
pKHB values21,22 (keeping in mind that only monofunctional
bases are taken into account) as outlined below. Note that B
had originally been termed Σ�2

Η.4,22 For a final explorative
model application, 28 amides and organophosphates outside the
original chemical domain were used. Note that these compounds
were not included in the original training set, because they
contain more than one possible HB acceptor site (which could
lead to secondary effects, and hence a wrong calibration of the
intrinsic, site-specific HB acceptor strength).

The chemical domain and experimental B value range are
shown in Table 1. The classification according to weak,
moderate, strong, and very strong HB acceptors is taken from
a previous publication.16 Interestingly, organophosphates have
B values substantially larger than all other compounds of the
present study; similar and even larger HB acceptor strengths
are likely for anionic sites. However, electrostatic interactions
involving ions are not included in the Abraham approach that
forms the basis for the HB acceptor strength parameter B.

Computational Details. The geometries of all molecules
were optimized at the semiempirical AM1 level23 by means of
MOPAC2002.24 Different charge analysis methods were applied,
namely Coulson charge densities based on zero differential
overlap (ZDO), Mulliken population analysis (MUL), and
electrostatic potential derived charges (ESP), which are derived
from the Coulomb potential at a large number of grid points.25

For the latter, we applied the Besler-Merz-Kollmann scheme
as implemented in MOPAC.26 The results are compared to the
ones obtained with ab initio level HF/6-31G** and DFT level
B3LYP/6-31G**, the latter of which were calculated with
Gaussian 0327 and with NPA net atomic charges28 for the
electrostatic contribution to B as described earlier.16

For the calculation of effective electron donor and acceptor
energies we used an in-house Fortran 77 program, which
searches for possible HB acceptor sites and quantifies their
intrinsic acceptor strengths. Nonlinear parameter calibration was
performed by the Levenberg-Marquardt algorithm, where the
Jacobian is then calculated by a forward-difference approxima-
tion. This algorithm is included in the freely available Fortran
MINPACK library.29

Hydrogen Bond Acceptor Model. The approach follows the
recently introduced ab initio model16 and was recalibrated for
the semiempirical AM1 level. For the quantification of the HB
acceptor strength B, the following components are taken into
account: Electrostatic interaction (ES), polarizability (PL), and
charge transfer (CT) that represents a covalent contribution. The
model equation to predict the B value at HB acceptor site s
reads

TABLE 1: Chemical Compound Classes and Associated
Ranges of Experimental HB Acceptor Strengthsa

compound class
HB acceptor

site n Bmin Bmean Bmax

Weak HB Acceptor Strength
halogens (aromatically bound) F, Cl, Br 10 0.05 0.08 0.10
olefins C (sp2) 24 0.07 0.09 0.19
halogens (aliphatically bound) F, Cl, Br 35 0.05 0.11 0.16
alkynes C (sp) 12 0.04 0.12 0.21
O-heteroaromatics O (sp2) 6 0.13 0.14 0.14
S-heteroaromatics S (sp2) 2 0.15 0.16 0.16
thiophenols S (sp2) 1 0.16 0.16 0.16
aromatic hydrocarbons C (sp2) 29 0.14 0.17 0.21
thiols S (sp3) 10 0.12 0.21 0.24

Moderate HB Acceptor Strength
anisoles O (sp3) 7 0.29 0.31 0.34
sulfides S (sp3) 6 0.27 0.32 0.37
nitriles N (sp) 14 0.32 0.36 0.40
phenols O (sp2) 42 0.30 0.39 0.50
aldehydes O (sp2) 10 0.33 0.44 0.45

Strong HB Acceptor Strength
anilines N (sp2-sp3) 20 0.41 0.47 0.59
ethers O (sp3) 17 0.41 0.48 0.76
ketones O (sp2) 27 0.49 0.52 0.56
alcohols O (sp3) 58 0.47 0.53 0.60
N-heteroaromatics N (sp2) 21 0.25 0.56 0.70

Very Strong HB Acceptor Strength
anilidesb O (sp2) 11 0.52 0.65 0.73
amines N (sp3) 32 0.58 0.66 0.79
amidesb O (sp2) 13 0.55 0.69 0.78
phosphatesb O (sp2) 4 1.00 1.11 1.21

a Bmin ) minimum experimental B value, Bmean ) mean of
experimental B values, Bmax ) maximum experimental B value.
b Not included in the calibration set, because of possible subordinate
HB acceptor sites: amides and anilides contain one N (sp2-sp3) site
in addition, and phosphates 3 O(sp3).
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In eq 2, Q(s), η(s), and EEocc(s) quantify the ES, PL, and CT
contributions to B(s) as outlined below, cES, cPL, and cCT denote
the associated regression coefficients, and c is the intercept.

The Coulomb contribution to B is characterized through the
net atomic charge Q(s). As discussed earlier,16 the dominating
part of this ES component is assumed to be localized at HB
acceptor site s, reflecting its readiness to undergo an attractive
Coulomb interaction with the (not explicitly considered) HB
donor site. For the AM1 calibration of eq 2, the following three
charge calculation schemes were explored: Coulson charges that
are based on zero differential overlap (ZDO), Mulliken popula-
tion analysis (MUL), and electrostatic potential derived charges
(ESP).

The PL contribution to B is evaluated through the local
hardness at the HB acceptor site, η(s), keeping in mind that
increasing hardness corresponds to decreasing polarizability. The
local hardness is defined through site-specific effective donor
and acceptor energies, EEocc and EEvac:16

EEocc and EEvac characterize the site-specific molecular readiness
for donating or accepting electronic charge. EEocc involves
occupied MO energies Ei, and an associated reference energy
Eref,

with

and EEvac is defined correspondingly through unoccupied MO
energies Ek with reference energy Eref as associated scaling
factor:

with

Reference energies Eref are calibrated separately for EEocc and
EEvac, applying nonlinear regression as outlined earlier.16 In eq
4, pi denotes the electron population of occupied molecular

orbital (MO) i, and the corresponding term in eq 5 is pk that
characterizes the electron space available in unoccupied MO k.
Introducing the LCAO-MO (LCAO ) linear combination of
atomic orbitals) coefficients cµi (that quantify the contribution
of AO µ to occupied MO i) and cFk (that quantify the
contribution of AO F to unoccupied MO k), pi and pk can be
calculated at atomic site r as follows:

If HB acceptor site s contains more than one atomic site r, the
resultant average value is

In eq 7, nA denotes the number of atomic sites that build HB
acceptor site s. Taking toluene as an example, its six π electrons
are delocalized over six carbon atoms, yielding nA ) 6 for its
π-electron moiety as weak HB acceptor site.

The third term of eq 2 represents the CT contribution to the
HB acceptor strength B. Here, the effective donor energy EEocc

at HB acceptor site s is used to characterize its readiness for
donating electron charge to the donor site upon hydrogen
bonding. The covalent HB component is thus modeled according
to the concept of electron donor-acceptor interaction of the
orbitals involved in hydrogen bonding.

Statistical Performance. The calibration quality was evalu-
ated through calculation of the squared correlation coefficient
r2, and the prediction performance was characterized through
the predictive squared correlation coefficient q2:30

In eqs 8 and 9, yi
obs denotes the observed target value (in our

case: Abraham parameter B) of compound i, and ymean the mean
experimental value of the data set under investigation (which
is the training set mean in case of r2, and the prediction set
mean in case of q2). Moreover, yi

fit in eq 8 denotes the regression-
fitted (calibrated) target value of compound i, which is replaced
through the predicted (not calibrated) target value yi

pred in eq 9.
Note that q2 ranges from 1 (perfect agreement) to -∞, with q2

) 0 representing the case where the model prediction is as good
as taking the experimental mean as predictor for all values. In
contrast to r2, q2 does not correct for systematic errors and thus
is preferred if existing regression models are applied to external
test sets. When a regression model is derived, q2 ) r2 for the
training set in case of parallel calibration of all multilinear
parameters (because in this case yi

pred ) yi
fit).

B(s) ) cES ·Q(s) + cPL ·η(s) + cCT ·EEocc(s) + c
(2)

η(s) ) - 1
2

(EEocc(Eref,s) - EEvac(Eref,s)) (3)

EEocc(Eref,s) )
∑

i)HOMO

1

Ei ·wi(Eref,s)

∑
i)HOMO

1

wi(Eref,s)

(4)

wi(Eref,s) ) pi(s) · exp(- Ei

Eref
)

EEvac(Eref,s) )
∑

k)LUMO

max

Ek ·wk(Eref,s)

∑
k)LUMO

max

wk(Eref,s)

(5)

wk(Eref,s) ) pk(s) · exp(- Ek

Eref
)

pi(r) ) 2 · ∑
µ(r)

(cµi)
2 pk(r) ) 2 · ∑

F(r)

(cFk)
2 (6)

pi(s) ) 2 ·
∑

r
∑
µ(r)

(cµi)
2

nA
pk(s) ) 2 ·

∑
r

∑
F(r)

(cFk)
2

nA

(7)

r2 ) 1 -
∑

i

(yi
fit - yi

obs)2

∑
i

(yi
obs - ymean)2

(8)

q2 ) 1 -
∑

i

(yi
pred - yi

obs)2

∑
i

(yi
obs - ymean)2

(9)
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To further characterize the model performance, the following
additional parameters have been used: root-mean-square error
(rms), systematic error (bias), maximum negative error (mne,
largest underestimation), and maximum positive error (mpe,
largest overestimation).

Model Calibration and Validation. Because the effective
donor and acceptor energies EEocc and EEvac (through which
local hardness η is defined, see eqs 3-7) depend on Eref in a
nonlinear manner, nonlinear regression with the Levenberg-
Marquardt algorithm was applied to calibrate eq 2. To account
explicitly for differences in atom type characteristics, the
calibration was performed separately for each HB acceptor atom
type (see Table 1), allowing a corresponding variation in the
final values of the model parameters cES, cPL, cCT, c (intercept),
Eref (EEocc), and Eref (EEvac).

The prediction capability of the resultant AM1 HB acceptor
strength model was evaluated by an extended leave-50%-out
procedure,31 stratified according to atom types of the HB
acceptor sites as already applied for the validation of the HF
and B3LYP models.16 Briefly, this procedure simulates an
external validation by dividing the data set into two groups of
(almost) the same size, group I and group II. Both groups cover
(essentially) the whole target value range and chemical domain
of the data set, which was achieved in the following way: For
each HB acceptor atom type, the compounds were ordered
according to their experimental B values, followed by their
alternate allocation to group I and II, respectively. Subsequently,
nonlinear calibration of eq 2 was performed separately for
groups I and II and for the HB acceptor atom type subsets.
Finally, the model trained with group I was used to predict all
B values of group II, and vice versa. In this way, both the
robustness (stability of calibration statistics) and prediction
capability (q2 statistics) can be assessed using two temporary
prediction sets that are nontrivial in their size with respect to
both the chemical domain and the target value range.

Results and Discussion

Model Parametrization. Nonlinear calibration of the refer-
ence energies associated with the effective donor and acceptor
energies, Eref (EEocc) and Eref (EEvac), revealed that for these
model parameters, a distinction is required only between π bond
and lone pair HB acceptor sites. Thus, HB acceptor atoms
associated with one, two or three valence-shell lone pairs (such
as nitrogen vs oxygen vs halogen) can be sufficiently well
described through the same Eref values. The resultant AM1-
calibrated Eref values are

The associated coefficients cES, cPL, cCT, and c are shown in
Table 2, again derived by nonlinear calibration of the data set.
Here, separation of the calibration according to HB acceptor
atom type was necessary, but for each atom type no further
distinction between different compound classes (as included in
the data set) was required.

The derived parameter values are based on the following
further simplifications that turned out to be adequate: First, π
bond (aromatic or conjugated) systems directly attached to a
non-π HB acceptor group do not provide a separate contribution

to B. Second, for heteroaromatic π systems only the heteroatom
lone pair contribution to B needs to be taken into account
explicitly.

ES, PL, and CT Contributions to B. The regression
coefficient of the electrostatic component, cES, is negative. Thus,
increasingly negative charge at the HB acceptor site increases
the strength of hydrogen bonding, reflecting the correspondingly
increasing Coulomb attraction to the positively charged hydro-
gen of the (not explicitly considered) HB donor site.

The sign of the hardness coefficient cPL varies with atom type.
Its positive sign for S and O as mainly moderate to strong HB
acceptors (see Table 1) indicates that for these lone-pair sites,
B increases with increasing local hardness. This trend is in line
with considering hydrogen bonding as hard-hard interaction
according to the Pearson concept. In contrast, B increases with
increasing polarizability (decreasing η) for halogen (F, Cl, Br)
and π bonds as weak HB acceptors. The latter finding differs
from the cPL signs derived for the corresponding ab inito (HF/
6-31G**) and DFT (B3LYP/6-31G**) models16 that are positive
for all HB acceptor sites except for π-electron C. Thus, AM1
appears to differ from ab initio calculations with respect to
hardness characteristics of halogen substituents.

The coefficient of the charge transfer contribution to B, cCT,
is positive for all atom types and charge calculation methods.
It confirms our expectation that with increasing effective donor
energy at the HB acceptor site, interaction of its electron-donor
orbital (lone pair or π bond) with the (not explicitly considered)
unoccupied electron-acceptor orbital of the HB donor site is

Eref(EEocc,lone pair) ) -12.0 eV
Eref(EEvac,lone pair) ) +2.0 eV
Eref(EEocc,π bond) ) -4.1 eV
Eref(EEvac,π bond) ) +1.9 eV

(10)

TABLE 2: Regression Coefficients of the Hydrogen Bond
Acceptor Model to Predict Abraham Parameter B from
Molecular Structurea

HB acceptor type cES cPL cCT C

ESP Net Atomic Charges
C -0.004 -0.229 +0.000 +1.717
N -0.000 +0.004 +0.286 +4.596
O -0.473 +0.038 +0.150 +2.279
S -0.000 +0.142 +0.170 +1.346
Fb -0.491 -0.116 +0.038 +1.789
Cl -0.275 -0.091 +0.069 +0.364
Br -0.219 -0.012 +0.009 +0.326

ZDO Net Atomic Charges
C -0.000 -0.232 +0.000 +1.736
N -0.024 +0.000 +0.286 +4.622
O -0.723 +0.039 +0.153 +2.245
S -0.000 +0.118 +0.182 +1.636
F -0.491 -0.077 +0.026 +1.788
Cl -0.322 -0.048 +0.000 +0.424
Br -0.264 -0.038 +0.000 +0.374

MUL Net Atomic Charges
C -0.000 -0.232 +0.000 +1.736
N -0.024 -0.001 +0.285 +4.622
O -0.725 +0.031 +0.150 +2.246
S -0.000 +0.116 +0.181 +1.637
F -0.015 -0.078 +0.035 +1.411
Cl -0.322 -0.048 +0.000 +0.425
Br -0.264 -0.038 +0.000 +0.374

a Coefficients for eq 3. ESP ) electrostatic potential, ZDO )
zero differential overlap (Coulson scheme), MUL ) Mulliken.
b Regression coefficients for ESP (based on the original data set in
ref 16 with 403 compounds): cES(F) ) -1.189; cPL(F) ) -0.065;
cCT(F) ) +0.006; c(F) ) +0.748; the variation of the coefficients,
compared to the data set with 383 compounds, is due to a large
variation in the experimental value range (0.05 [383] vs 0.17 [403]);
the regression coefficients for other elements are not shown, because
their change is statistically not significant.

Hydrogen Bond Acceptor Strength J. Phys. Chem. A, Vol. 113, No. 37, 2009 10107



increasingly favored, yielding a correspondingly increasing
energy stabilization through hydrogen bonding.

For the overall best model that employs ESP charges, the
intercorrelation between the ES term and the PL term is 14%,
and 30% for both ES-CT and PL-CT. In fact, all three terms
are needed for both physical and statistical reasons to describe
the HB acceptor strength sufficiently well. Interestingly, the ES-
PL intercorrelation was significantly larger with HF/6-31G**
and B3LYP/6-31G**,16 suggesting a respective systematic
difference between the semiempirical and ab initio level of
calculation.

Overall Performance. The performance statistics of the
AM1-based B prediction model are summarized in the upper
part of Table 3. For the set of 383 compounds, r2 ranges from
0.93 (Mulliken charges) to 0.97 (ESP charges). For the latter,
the data distribution of predicted versus experimental B values
is shown in Figure 1.

Interestingly, standard ZDO charges yield almost the same
prediction quality as ESP, both of which outperform the results

employing Mulliken population analysis. Note that both ESP
and Mulliken population analysis require additional calculation
steps as compared to ZDO. Moreover, ESP net atomic charges
are derived to reproduce, as well as possible, the electrostatic
field around the molecule sensed grid-wise at some distance,
while ZDO and Mulliken population analysis focus on different
mathematical schemes to allocate the overall electron density
to individual atoms.

To our surprise, AM1 yields a similar performance as HF or
B3LYP (see Table 3), despite its far less computation time.
However, the computational effort for semiempirical calculations
is still higher than for fragment models. For example, screening
of 2000 small- to medium-size organic compounds would
require only 3 min with a fragment model (ca. 100 ms per
molecule), about 3 h with AM1 (ca. 5 s per molecule), and
about 1 month processor time when a standard ab initio level
of calculation is employed (ca. 20 min per molecule). Note,
however, that even the ab initio approach would require
considerably less time than the experimental determination of
B using chromatography.

In the lower part of Table 3, the performance statistics are
shown for Platts’ increment method8 and for its commercial
variant as implemented in Absolv.13 While the former and
original methods turn out to be superior for predicting B as
compared to Absolv (r2 0.84 vs 0.79, q2 0.79 vs 0.57), both
fragment schemes cannot compete with the quantum chemical
methods. These statistics are based on Σ�2

H increments that refer
to wet systems; use of Σ�2

O increments for dry systems
(calibrated for dry octanol) yields even poorer results. In Figure
2, the data distribution of predicted vs experimental B values is
shown for the 2008 version of the Absolv model, and in Figure
3 for Platts’ original increment scheme.

With the Platts model, many B values are predicted to be
around 0.45, but with associated experimental values ranging
between 0.12 (R-pinene) and 0.69 (2,4,6-trimethylpyridine). This
mis-fit suggests a lack of appropriate increments. The Absolv
model yields both still inferior overall statistics and a larger
bias (-0.09). A possible reason for the latter is that Absolv
was calibrated also with compounds that have more than one
HB acceptor site and thus an overall effectiVe HB acceptor
strength. For such compounds, competition between different

TABLE 3: Hydrogen Bond Acceptor Model Statisticsa

methodb n r2 q2 rms bias mne mpe

Semiempirical Models
AM1 (ESP) 383 0.97 0.97 0.04 0.00 -0.17 0.15
AM1 (ZDO) 383 0.95 0.95 0.04 0.00 -0.24 0.15
AM1 (MUL) 383 0.93 0.93 0.05 0.00 -0.27 0.14

Ab Initio and DFT Models16

HF/6-31G** (NPA) 383 0.96 0.96 0.04 0.00 -0.15 0.17
B3LYP/6-31G** (NPA) 383 0.95 0.95 0.04 0.00 -0.22 0.10

Fragment Methods
Platts8 383 0.84 0.79 0.09 -0.04 -0.27 0.31
Absolv13 383 0.79 0.57 0.13 -0.09 -0.44 0.09

a The statistical parameters are n ) number of chemicals, r2 )
squared correlation coefficient, q2 ) predictive squared correlation
coefficient, rms ) root-mean-square error, mne ) maximum
negative error (largest underestimation), mpe ) maximum positive
error (largest overestimation). b The applied quantum chemical
methods are AM1 ) Austin Model 1, HF ) Hartree-Fock, DFT )
density functional theory with the B3LYP functional. Net atomic
charges for the Q(s) parameter in eq 3: ESP ) electrostatic
potential, ZDO ) zero differential overlap (Coulson scheme), MUL
) Mulliken, NPA ) natural population analysis.

Figure 1. AM1 HB acceptor strength model, using ESP net atomic
charges. Predicted vs experimental Abraham B values of carbon
(squares), nitrogen (circles), oxygen (triangles up), sulfur (triangles
down), and halogen (rhombs) hydrogen bond acceptors.

Figure 2. Absolv ADME boxes module. Predicted vs experimental
Abraham B values of carbon (squares), nitrogen (circles), oxygen
(triangles up), sulfur (triangles down), and halogen (rhombs) hydrogen
bond acceptors.

10108 J. Phys. Chem. A, Vol. 113, No. 37, 2009 Schwöbel et al.



HB acceptor sites for HB donor groups is likely to reduce the
contributions of the individual sites to effectiVe values that sum
up to an overall effectiVe HB acceptor strength. Because the
Absolv increments are probably based on effective strengths,
they are less suited to predict B for monofunctional compounds,
the latter of which are driven by the site-specific intrinsic HB
acceptor strength.

From this viewpoint, our quantum chemical models yield site-
specific intrinsic HB acceptor strengths that are valid for
compounds with only one HB acceptor site. In the case of more
than one HB acceptor site, the total energy gain through parallel
activation of all hydrogen bonds is less than the sum of the
individual HB energies, which has to be taken into account when
extending our model approach to multifunctional compounds.

Model Validation. As outlined above, the two subsets group
I and group II were generated such that each of them covers
both (almost) the whole target value range and the whole
chemical domain of the data set. The associated calibration and
prediction statistics are summarized in Table 4.

As can be seen from the table, groups I and II differ slightly
in their calibration statistics, with group I results being close to
the total set statistics. At the same time, both subsets yield a
similar rms value of around 0.05. Moreover, application of the
group I model for predicting group II B values yields a q2 value
similar to the group II calibration r2 (0.96 vs 0.97), and
correspondingly the group I q2 value (achieved through ap-
plication of the group II model) is similar to the group II training
r2 (0.91 vs 0.94). These findings demonstrate that our model
has a good prediction power.

Method Performance for Individual HB Acceptor Types.
In practice, QSAR predictions often concern only one or few
compounds or compound classes to support their evaluation with
respect to the target properties under investigation. In such cases,
pertinent information about the class-specific method perfor-
mance is required, keeping in mind that also methods with an
overall good performance may vary in their prediction capability
for individual compound classes.

In Table 5, the B prediction statistics of our semiempirical
and ab initio16 methods and of the increment methods of Platts
and Absolv are summarized for the total compound set as well
as for the individual HB acceptor atom types.

The observed variation of r2 between individual HB acceptor
types is partly driven by a corresponding variation in subset
size. As a general trend, r2 decreases with decreasing target value
range.30 The reason is that in eq 7, the terms (yi

obs - ymean)2 in
the denominator become smaller with decreasing target value
range, thus increasing the value of the quotient, and decreasing
r2. In such situations, the root-mean-square error rms is more
robust in assessing the prediction quality, because it focuses
on the terms (yi

fit - yi
obs)2 (training mode) or (yi

pred - yi
obs)2

(external prediction mode) that do not depend directly on the
target value range.

For all atom types, rms is below 0.05 with HF/6-31G**(NPA),
and below 0.06 with AM1(ESP) and B3LYP/6-31G**(NPA).
This is in the same range as the experimental errors are supposed
to be, making this approach a promising tool to assess the HB
acceptor strength for compounds where respective experimental
data are lacking.

For both AM1(ESP) and HF/6-31G**(NPA), the performance
in terms of rms is slightly inferior for N sites than for most
(HF) or all (AM1) other lone-pair HB acceptors. Interestingly,
AM1 is superior to HF for fluorine, and here B3LYP yields the
smallest subset rms. It is also surprising that for π-electron C
as weak HB acceptor, the AM1 rms is again smaller than the
one for HF. Note, however, that for both C and F, the
experimental B value ranges are very small (0.17 and 0.05),
which is also reflected in rather low r2 values achieved with
the different quantum chemical models. The HB acceptor
strength of sulfur sites is better described with HF than with
AM1, while Cl yields a lower rms (but also lower r2) for AM1
than for HF.

Overall Table 5 suggests that among the quantum chemical
methods, HF is preferred for N, O, S, and Br as well as with
regard to the overall performance, and that AM1 yields the
lowest rms for F, Cl, and π-electron C and is generally preferred
over B3LYP.

Keeping in mind that our model is currently confined to
quantifying the intrinsic HB acceptor strength, future model
refinements should address steric hindrance, conformational
flexibility, and (in the case of multifunctional compounds)
intramolecular hydrogen bonding.

As compared to the quantum chemical B prediction models,
the fragment schemes of Platts8 and Absolv13 yield significantly
larger rms values for the total set as well as for all HB acceptor
type subsets. Taking nitrogen sites as an example, the rms values
achieved with HF, AM1, Platts, and Absolv are 0.05, 0.05, 0.09,
and 0.14, respectively, and for oxygen HB acceptor sites the
corresponding rms values are 0.03, 0.04, 0.10, and 0.16 (Table
5). At the same time, the Platts scheme and Absolv differ
significantly in individual prediction errors, which is illustrated
with cyclohexene oxide as one outlier. With the Platts scheme,
the experimental B value of 0.48 is overestimated by 0.21
(predicted B ) 0.69), while Absolv underestimates the HB

Figure 3. Platts fragment method. Predicted vs experimental Abraham
B values of carbon (squares), nitrogen (circles), oxygen (triangles up),
sulfur (triangles down), and halogen (rhombs) hydrogen bond acceptors.

TABLE 4: Model Validation by Data Set Splitting into
Group I and Group IIa

training external prediction

group
group size

n r2 rms q2 rms

I 195 0.97 0.04 0.91 0.06
II 188 0.94 0.05 0.96 0.04

a The semiempirical AM1 method has been applied using ESP
(electrostatic potential) net atomic charges. The subsets group I and
group II cover both the whole chemical domain and essentially the
whole value range of B. The statistical parameters are: n ) number
of compounds, r2 ) squared correlation coefficient, rms ) root-mean-
square error, q2 ) predicted squared correlation coefficient.
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acceptor strength by 0.22 (predicted B ) 0.26). In contrast, all
three quantum chemical methods yield predicted B values close
to the experimental value (AM1, 0.43; HF, 0.45; B3LYP, 0.48).

Interestingly, both fragment methods appear to perform better
for halogen than for N, O, and S, with F yielding the largest
rms among the halogens. Note, however, that the Absolv rms
for F is already larger than its experimental value range (0.10
vs 0.05), and that for all halogens as well as for π-electron C
r2 is in the range of 0.07-0.34 for both the original Platts
method and its Absolv update.

Tentative Inclusion of B Values Approximated through
�2

H or pKHB. The Abraham B scale refers to solutes surrounded
completely by solvent molecules and thus quantifies overall HB
basicities. In contrast, both �2

H and pKHB
21 refer to a 1:1

solute-solvent complex and are related to each other through
the equation22

While �2
H and B (that had originally been called Σ�2

Η) generally
differ for multifunctional bases, their values for solutes with
only one basic site appear to be usually quite similar: For a set
of 81 monofunctional HB acceptors with experimental values
for both �2

H and B (details not shown), the respective r2 was
0.90, the average unsigned and signed deviations (scatter and
bias) were +0.046 and -0.0046, respectively, and the maximum
deviation was 0.23 (observed for 1,8-cineole). Moreover, for
75 of the 81 compounds the deviation between �2

H and B was
smaller than 0.10. At the same time, the average B scatter per
compound for the associated subset of 12 solutes with more
than one B value was 0.062, with a maximum difference of
0.16. Taking dimethyl sulfide as an example, �2

H ) 0.2832 as
compared to B values of 0.27 and 0.29 reported in the
literature,33,34 although the two electron lone pairs of sulfur might
suggest a difference in energy between full HB saturation and
1:1 HB complex formation.

Inclusion of experimental �2
H as an approximation of B for

20 additional monofunctional bases (for 15 compounds derived
from pKHB through eq 11; see Supporting Information) yields
r2 ) 0.96 and rms ) 0.04 when applying AM1(ESP) to the
accordingly augmented set of 403 compounds (see footnote b
of Table 5). Interestingly, the AM1(ESP) regression coefficients
remain essentially unchanged except for F as HB acceptor,
where the B value range of the augmented set is 0.17 as
compared to only 0.05 for the 383 compounds with original B
values (see footnote b of Table 2). Note, however, that for
multifunctional compounds it is not recommended to use �2

H

for modeling B.
Model Extension to Amides and Organophosphates. The

quantum chemical model approach to predict B from molecular
structure has been calibrated and validated (through simulated
external prediction employing groups I and II as discussed
above) for compounds containing only one HB acceptor site.
Functional groups including two or more heteroatoms have not
been considered so far. In this section, we will explore the model
performance for two biochemically relevant compound classes
that both contain more than one (potentially) HB-relevant site
and thus are outside the initial model domain.

The first respective functional group is the amide group
R′C(dO)sNR2 that occurs frequently in amino acids, peptides
and proteins. Prediction of its HB acceptor strength would allow
one to forecast the HB energy gain involved in receptor binding
or protein folding. The second compound class are organophos-
phates (RO)3PO that form components of membrane lipids and
are also metabolites of insecticides acting as acetylcholine
esterase inhibitors.35

TABLE 5: HB Acceptor Model Statistics for Different Atom
Typesa

HB acceptor type r2 rms bias mne mpe

AM1 (ESP)
allb 0.97 0.04 0.00 -0.17 0.15
N 0.86 0.05 0.00 -0.12 0.15
O 0.88 0.04 0.00 -0.17 0.08
S 0.60 0.04 0.00 -0.08 0.11
Fc 0.22 0.02 0.00 -0.02 0.02
Cl 0.73 0.01 0.00 -0.02 0.02
Br 0.76 0.01 0.00 -0.03 0.01
C 0.61 0.03 0.00 -0.07 0.07

HF (NPA)
all 0.96 0.04 0.00 -0.15 0.17
N 0.86 0.05 0.00 -0.11 0.17
O 0.90 0.03 -0.01 -0.15 0.08
S 0.85 0.04 -0.01 -0.11 0.05
Fc 0.00 0.05 0.00 -0.09 0.05
Cl 0.81 0.04 0.00 -0.07 0.06
Br 0.82 0.03 0.00 -0.05 0.04
C 0.47 0.03 0.00 -0.06 0.06

B3LYP (NPA)
all 0.95 0.04 0.00 -0.22 0.10
N 0.87 0.04 0.00 -0.15 0.09
O 0.79 0.05 0.00 -0.22 0.08
S 0.87 0.06 -0.01 -0.12 0.10
Fc 0.10 0.03 0.00 -0.06 0.05
Cl 0.82 0.01 0.00 -0.02 0.01
Br 0.85 0.01 0.00 -0.02 0.01
C 0.57 0.03 0.00 -0.07 0.10

Platts8

all 0.83 0.09 -0.04 -0.27 0.31
N 0.58 0.09 -0.05 -0.27 0.20
O 0.32 0.10 -0.06 -0.25 0.13
S 0.53 0.11 -0.09 -0.16 0.01
F 0.19 0.06 -0.05 -0.09 0.03
Cl 0.13 0.03 0.00 -0.02 0.07
Br 0.19 0.05 -0.03 -0.09 0.03
C 0.07 0.06 0.00 -0.10 0.31

Absolv13

all 0.79 0.13 -0.09 -0.44 0.09
N 0.58 0.14 -0.11 -0.30 0.06
O 0.07 0.16 -0.12 -0.44 0.09
S 0.23 0.10 -0.08 -0.18 0.07
F 0.19 0.09 -0.08 -0.13 0.02
Cl 0.33 0.05 -0.03 -0.07 0.06
Br 0.34 0.07 -0.06 -0.11 0.02
C 0.33 0.04 -0.01 -0.11 0.06

a The HB acceptor type subsets have the following numbers of
compounds (n) and B value ranges (vr): All: n ) 383, vr ) 0.75.
N: n ) 87, vr ) 0.54. O: n ) 167, vr ) 0.63. S: n ) 19; vr )
0.25. F: n ) 9, vr ) 0.05. Cl: n ) 18, vr ) 0.07. Br: n ) 18, vr )
0.07. C: n ) 65; vr ) 0.17. The statistical parameters are: n
) number of chemicals, r2 ) squared correlation coefficient, rms )
root-mean-square error, mne ) maximum negative error (largest
underestimation), mpe ) maximum positive error (largest
overestimation). AM1, HF/6-31G**, and B3LYP/6-31G**
calculations have been applied for the quantum chemical models,
employing either ESP (electrostatic potential) or NPA (natural
population analysis) for quantifying net atomic charges. b Statistics
for the original data set16 that includes also 20 monofunctional
compounds with B approximated through pKHB and �2

H (calculated
with regression coefficients in footnote b of Table 2): n ) 403; r2 )
0.96; rms ) 0.04; bias ) 0.00; mne ) -0.17; mpe ) 0.22.
c Statistics for H-bond acceptor F when using the original data set
AM1 (HF/B3LYP): n ) 10; vr ) 0.17; r2 ) 0.52 (0.41/0.49); rms
) 0.04 (0.05/0.04); bias ) 0.00 (0.00/0.00); mne ) -0.09 (-0.09/
-0.06); mpe ) 0.06 (0.05/0.05).

�2
H )

1.1 + pKHB

4.636
(11)
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For the explorative application of our quantum chemical
models, we make the following simplifying assumptions: For
amides, only the sp2 carbonyl oxygen (CdO) is considered as
an HB acceptor site, neglecting the lone pair of the amide N as
a second site. Indeed, this assumption is in accord with the well-
known fact that protonation of amides occurs only at the
carbonyl oxygen, and that both the length of the central
R2NsC(O)R′ bond and its rotation barrier indicate a substantial
double-bond character that can be visualized through the
resonance structure R2N+dC(sO-)R′.

Similarly, for the phosphate group we assume that only the
(formally) double-bonded sp2 oxygen, (RO)3PdO, forms a
potent HB acceptor site. Again, the situation can be visualized
through an ionic resonance structure (RO)3P+sO-, demonstrat-
ing the readiness of the partly negatively charged oxygen to
act as HB acceptor. As with all other HB-active atoms with
lone pairs, aromatic systems directly attached to amide or
phosphate functionalities are not considered to form a separate
HB acceptor site. Thus, for both functional groups the intrinsic
B value calculated for the sp2 oxygen is taken as the overall
predicted B value. The influence of the other heteroatoms as
well as of all other parts of the molecule is taken into account
through their participation in the LCAO-MO wave functions
and the resultant impact on net atomic charge, hardness, and
effective donor and acceptor energies at the HB site as defined
through eqs 2-7.

In Table 6, experimental and predicted B values are listed
for 24 amides and four organophosphates. As can be seen from
the table, HF/6-31G** yields surprisingly good predictions for

both compound classes with an rms of 0.048. AM1 performs
reasonably well for the amides but underestimates the phosphate
B values by ca. 0.17-0.37 units. With B3LYP, still larger
deviations between experimental and calculated B values are
obtained.

In this context, two issues are important to note: First, and
as mentioned already, the calibration of the models did not
contain any amide or organophosphate, and thus in particular
no sp2 oxygen attached to amide carbonyl carbon or phosphorus.
Second, the experimental B range of organophosphates
(1.00-1.21) is far beyond the maximum B value in the
calibration set (0.79). From this viewpoint, the HF prediction
quality is surprisingly good, which still holds for AM1 applied
to amides. Although we certainly do not recommend applying
regression models outside their chemical domain, the present
explorative study demonstrates the robustness of the quantum
chemical approach introduced for both the ab initio16 and AM1
levels of calculation.

With regard to the HB acceptor strength of organophosphates,
a third issue deserves attention. According to 1:1 complexation
values from earlier literature,32 the four compounds should have
B values between 0.76 and 0.79, which would be in much better
agreement with B3LYP/6-31G**, and also closer to the AM1
values than to the HF/6-31G** predictions. In case the more
recent organophosphate B values (as listed in Table 6) are
correct, it could still be that our assumption to ignore the ester
oxygens as additional HB acceptor sites is not adequate, and
that explicit consideration of those additional sites would
improve the AM1 and B3LYP performance. Thus, clarification
of this issue appears to require both additional experimental
and theoretical work.

Conclusions

The quantum chemical approach to predict hydrogen bond
(HB) acceptor strength from local molecular parameters of the
individual compounds could be transferred successfully from
ab initio calculations to the fast-running semiempirical AM1
method. The new model allows one to screen large inventories
of organic compounds for their site-specific intrinsic HB
acceptor strength in terms of the Abraham B value. Despite
much lower computational efforts, the AM1-based model yields
an overall B prediction quality similar to the corresponding ab
initio level of calculation. Although the model was calibrated
with small molecules, the AM1 version is applicable for large
compounds that go beyond the current scope of ab initio
methods. While the current model parametrization is confined
to HB acceptor atom types N, O, S, F, Cl, Br (lone-pair sites),
and π-electron C (aromatic and conjugated systems), explorative
application to amides and organophosphates demonstrates its
mechanistically sound basis and robustness as well as op-
portunities for respective model extensions. For compounds with
multiple HB acceptor sites, their competition for both intramo-
lecular and intermolecular HB interaction is likely to reduce
the individual site-specific HB acceptor strengths, which needs
to be taken into account when the local parameter approach is
extended to respective compounds. Additional routes to develop
the model further include the consideration of steric hindrance
as well as of conformational flexibility.
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TABLE 6: Experimental and Predicted B Values for
Amides and Organophosphates (Model Extension, Not
Included in the Original Model Domain)

compound B (exp)a B (HF)b B (B3LYP)b B (AM1)c

Amides (n ) 24)
formamide 0.60 0.62 0.55 0.67
acetamide 0.68 0.70 0.59 0.71
proprionamide 0.69 0.70 0.58 0.72
butanamide 0.68 0.70 0.58 0.72
isobutanamide 0.66 0.70 0.59 0.72
N-methylformamide 0.55 0.65 0.57 0.66
N-methylacetamide 0.72 0.73 0.61 0.71
N-methylpropanamide 0.71 0.72 0.60 0.71
N-butylacetamide 0.74 0.74 0.61 0.71
N,N-dimethylformamide 0.74 0.67 0.58 0.66
N,N-dimethylacetamide 0.78 0.73 0.62 0.70
N,N-diethylacetamide 0.78 0.75 0.63 0.72
N,N-dimethylpropanamide 0.78 0.73 0.61 0.71
benzamide 0.68 0.66 0.57 0.69
3-methylbenzamide 0.63 0.66 0.44 0.70
4-methylbenzamide 0.65 0.67 0.44 0.71
N,N-dimethylbenzamide 0.7236 0.67 0.60 0.68
N,N-diethylbenzamide 0.7236 0.68 0.61 0.70
formanilide 0.50 0.56 0.51 0.57
4-methylformanilide 0.52 0.57 0.52 0.58
acetanilide 0.67 0.63 0.55 0.61
2-methylacetanilide 0.70 0.64 0.55 0.62
3-methylacetanilide 0.66 0.64 0.55 0.62
4-methylacetanilide 0.67 0.65 0.55 0.62

Organophosphates (n ) 4)
trimethyl phosphate 1.00 1.08 0.71 0.83
triethyl phosphate 1.06 1.10 0.73 0.87
tri-n-propyl phosphate 1.15 1.11 0.73 0.87
tri-n-butyl phosphate 1.21 1.11 0.73 0.87

a Experimental values are taken from literature.34,36 For the 28
compounds, the B value range is 0.69. b Quantum chemical model
applying the basis set 6-31G** and NPA (natural population
analysis) net atomic charges. c Semiempirical quantum chemical
model employing ESP (electrostatic potential) to quantify net atomic
charges.
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Supporting Information Available: A table listing all 383
compounds together with experimental and predicted values of
the Abraham parameter B and a table with 20 additional
monofunctional compounds and B values approximated through
�2

H and pKHB. This material is available free of charge via the
Internet at http://pubs.acs.org. A copy of a program to predict
the intrinsic hydrogen bond acceptor strength from information
provided through MOPAC or Gaussian output files can be
obtained upon request from the corresponding author.
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(16) Schwöbel, J.; Ebert, R.-U.; Kühne, R.; Schüürmann, G. J. Chem.
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